株式会社ケミカル・テクノロジーはコンクリート構造物保護技術と光触媒塗料をご提供致します。

株式会社ケミカル・テクノロジー
新着情報

2024/10/08

日本を磨き合い通心10月号

当社の新技術を率先して導入していただいている日本を磨く会の会報「日本を磨き合い通心」の10月号に寄稿させていただきました。当社光触媒の漆喰への適用に関する理論的なご説明とその最適な活用法について解説させていただきました。詳細は同会にお問い合わせ下さい。


2024/08/25

透明性の高い光触媒コーティング液


透明性と高度の親水性とその持続力をすべて叶える光触媒コーティング剤はなかなか実現が難しかったのですが、ようやく目処がたってきました。浴室鏡の防曇用途にも活用できます。


2024/08/03

プレゼンで注目されるための新展示アイテム

8/5に某大手設計事務所でプレゼンの機会を頂けることになりましたので光触媒の斬新な活用方法のご提案も兼ねて新しい展示アイテムを考えました。実演はYouTubeでもアップしておりますが、このような機能を謳える光触媒コーティング剤は他には絶対にないと自信を持って断言します。


2024/07/02

東北大学の外装に施工

仙台を中心に東北地方で施工パートナーとして活躍されているスカイリノベーション社は以前から東北大学のキャンパス各所へ施工されてきましたが、最新の施工例の報告書を送って頂いたのでご紹介します。コロナ対策以外でこんなに頻繁に大学で採用される際はあまりないのではないでしょうか。


2024/06/23

カスタム液剤の消臭用途施工例

施工例仙台を中心に東北地方で施工パートナーとして活躍されているスカイリノベーション社からクルマ車内への施工例報告をいただきました。シートやフロアマットの汗臭、ペット臭は光触媒自体の消臭機能だけでは解決不可能で、強い殺菌機能も必要ですから、金属粉濃度を格段に上げたカスタム液剤をご提供しました。施工後の検査画像もバッチリです。該社は東北大学を含めガラス光触媒施工でも実績を積まれています。


  • RSS
  • 全て表示
  • 各種応用例(ソーラーパネル)

    ソーラーパネル

    かんたん施工でも降雨に曝される屋外屋根部分でセルフクリーニング機能を発揮し続けますが、乾燥状態でのホコリ汚れも防止できる機能も特異的な特長です
  • 最新情報(レジオネラ菌対応)

    光触媒コーティング剤として史上初めて公的機関でのレジオネラ菌滅菌機能の証明書をいただきました。この菌の撲滅には非常に高い耐水性も求められていますが、それも楽々とクリアしておりますのでご安心ください。
  • 各種応用例(水槽の藻抑止)

    光触媒機能自体に加えて、とてつもない耐水性が要求される分野でも続々と応用範囲を広げています。専業メーカーと共同開発しております。

常に最先端のフッ素施工・光触媒&電気化学技術をご提供します!

常に最先端のフッ素施工・光触媒&電気化学技術をご提供します!

20年以上にわたり光触媒コーティングの先進的な開発に携わってきました
防カビ、漂白、殺菌、塩害防止、防錆、中性化防止等の能動的な機能をコーティング膜に付与することが得意中の得意です。
現在この機能は主に光触媒を用いて出していますが他の化学現象も実用化準備中です。
施工がかんたんで耐久性が良好でしかもそこそこ低廉な価格であることに心がけています。
これらの問題で悩んでおられる日本中の皆さんにぜひ使って頂きたいです。ブルネイ大学

当社の特徴

FVC

ベンチャーファンドからの投資を受けました
3度にわたる厳格な審査の結果、この度フューチャーベンチャーキャピタル社(東証スタンダード8462)から出資を受けました。上場会社を株主としてお迎えしたからにはIPOに向けて全力を尽くしたいと思います。

きれいJAPAN

きれいJAPAN活動に積極的に貢献します
今年から始動した光触媒工業会のきれいJAPAN活動に当社も懸命に尽くします。セルフクリーニングは先輩会社がすでに関与されていますので
1.完璧な防カビ機能による景観保持
2.比肩なきコンクリートの保護機能による景観保持
3.鉄鋼の効率的防錆による景観保護
を重要ポイントとして活動します。宜しくお願いします。

セルフクリーニング系の特許を取得しました。わかりやすい解説をYouTubeにアップしておりますのでご覧ください。
親水性に関する久しぶりの基本特許です。当社が多用しているNafionは光触媒反応に強靱な半面、環境に放置するとCa2+やAl3+等の多価金属イオンと結合してアイオノマーを形成して親水性が失われます。そこで親水性の発現を完全に光触媒に負わせることでこれを克服し「高くて永続的な親水性」「膜厚依存が低く良好な作業性」と「コストダウン」すべてを可能にしました。光沢の変化も殆どないので自動車ボディーへも適用できます。
また、この度(財)関西文化学術研究都市推進機構から優れた先進的特許というお墨付きを得ました。光触媒としてははじめての快挙です。権威ある機関から用途や得意先まで提案されて身に余る光栄です。けいはんな
詳細情報
Nafion型光触媒コーティング剤の誕生秘話を披露しています。青年時代から信奉するポアンカレの法則にまったく従った発明でした。自分の成功体験を踏まえて、若い技術者、研究者には「できるだけ専門外の人達と交流して情報交換するように」と忠告しています。そういう私も日々実践しいます。
ブログ

2024/09/23

いわゆるシリコン塗料やセラミック塗料とは

いわゆるシリコン塗料やセラミック塗料とはフッ素樹脂塗料は超耐候性をウリにしてきたのですが1990年初頭にカネカ(鐘淵化学)が樹脂の架橋成分にシリコーンを採用した塗料用のアクリル樹脂を開発して当時大きな話題になりました、品名は「ゼムラック」と称してました。既存の安価な樹脂の組合わせでほぼフッ素樹脂と同程度の超耐候性が得られるのですから塗料業界のゲームチェンジャーになる可能性がありました。私もその化学構造と特性を当時は必死で研究しました。かんたんにはザッと以下のような構造です。優れた塗料用樹脂ではありますが「硬化に時間が掛かる」と「湿気のような水分で反応を起こすので水性にはできない」という欠点も分かりました。これが大々的に市場に現われてきてから「アクリルシリコン塗料」または「アクリルシリコーン塗料」という名称が一般的になってきました。余談ですが私はふつうのアクリル塗料にγ-イソシアネートプロピルトリメトキシシランという試薬を投入するとかんたんにアクリルシリコン塗料になることを発見しました。今でも使えますのでご興味の折にはご連絡ください。
アクリルシリコン塗料は水性化が不可能だと思っていたのですが不思議なことに2010年くらいから水性のアクリルシリコン塗料が登場してきました。略してシリコン塗料と言われるようにもなり「どんな分子構造になっておるのだ?と訝っておりましたが、どうやら以下のようになっているようです。架橋部分がなく、たんにアクリルの主鎖にシリコーンの枝が所々に生えているだけです。こんなんでアクリルの耐候性が向上するのだ??という疑問が湧きますが、これはシリコーンの超撥水性に拠る成果ですね。ケイ素と炭素の直接結合は天然には存在せず人工的なモノですがフッ素を超える超超撥水性が特長なので塗膜内への水分の浸潤を防ぐ防波堤になります。これは耐候性の向上に大きく寄与します。ただ、問題はその含有量で、別にJISでシリコーンの含有量は規定されていないのでメーカーの方針に大きく依存します。ただ、シリコーンは特殊な官能基が多く、これはFT-IRでかんたんに分析可能でおおまかな含有量も推定できます。シリコーン(樹脂)の成分のシリコン(ケイ素)はセラミックとも見なせますのでシリコン塗料という名称に飽きたメーカーは「セラミック塗料」とも最近称しだしてます。


2024/09/14

光触媒の消毒・殺菌機能はなぜ弱いのか?

光触媒の消毒・殺菌機能はなぜ弱いのか?題名からしてセンセーショナルなのですが、私だけではなく実際に光触媒の市場化に関わった関係者の本音ですね。そこで私は金属銅との組合わせを考案したのですが、そもそも本来は反応性の高い活性酸素を発生させている光触媒自体を工夫することで解決できないかという問題意識を常に持っていました。
活性酸素種はヒドロキシラジカルとかスーパーオキサイドとか色々確認されていますがすべて超短寿命でいずれは過酸化水素H2O2に変わります。だから消毒・殺菌機能も過酸化水素と比較するのが分かりやすいです、身近なものではオキシドールですね。殺菌成分である過酸化水素H2O2の性質をかんたんな表にしてみましょう。注目すべきは水より少し高いものの沸点が意外に低い141℃であることです、けっこう早く蒸発していくのですね。水中とか閉鎖空間では見落とされがちの性質ですが開放空間で塗膜になっていれば「作っても、作っても蒸発して濃くならない」というジレンマが生じます。表題の問題の本質はそこにあると考えられます。
論文や資料等を照会してみると消毒・殺菌機能を十分に得るためには過酸化水素換算で2000ppm以上の濃さが必要ですから、蒸発させずに蓄積するをもつ別の過酸化物の形成が必要です。
このアイデアに従った消毒用途の新製品薬液を今週初出荷しました。まだ特許を出し切っていない現状ですので詳細は後日に詳述しますが、銅や銀等の金属イオンに頼らずにこの性能を十分に発揮するはじめてのコーティング剤だと自負しています。


2024/07/26

光触媒に適したバインダー樹脂とは

光触媒に適したバインダー樹脂とは前のブログに続きですが、光触媒反応に浸蝕されない樹脂として4フッ化エチレン6フッ化プロピレンコポリマー(FEP)を樹脂成分に採用して1世紀の耐候性を有するフッ素樹脂塗料をほぼ完成しつつあったのですが、じゃあ、その樹脂をそのまま採用して光触媒塗料ができるような気もします。しかし現実にはその問題点だけを克服しても完成しません。光触媒反応のおさらいをしてみましょうホンダフジシマ効果をよくよく顧みると水溶液中の反応であることが分かります。つまり反応に水が介在します。FEPは超撥水性で水をまったく寄せ付けないので光触媒用のバインダー樹脂になりえません。シリコーンもその意味でアウトですね。また、シリケート系のガラス質も水を通さないという意味でアウトっぽい材料です。そこで私が注目したのがナフィオンです。これ以外にも塗装適性という要因も加味していちおう光触媒用の必須条件を大まかに纏めますと
1. 光触媒反応に浸蝕されないこと
2. 十分長期の耐候性を有すること
3. 水を膜内に取り込む性質があること
4. 水だけでなくアルコールやこれをその他の有機溶剤にも溶解すること
5. 硬化後には十分な耐水性を有すること
6. プラスチック等への付着性を有すること
と6項目が挙げられます。これをすべてクリヤーできる樹脂は今のところナフィオンだけで、やや近い性質の樹脂としてはポリアクリル酸が上げられますがこれは2と4と5が今のところクリアできないので実用にはまだ遠いのが現実です。
「耐候性をもつ樹脂主鎖に親水性の枝を付ける」という原理自体は明白ですので、今後これに従った展開での新製品を開発中ですので順次ご報告させて頂く予定です。


2024/07/07

光触媒とフッ素樹脂との関係

光触媒とフッ素樹脂との関係光触媒反応は塗料技術の業界では塗膜を劣化させる厄介な反応として、もう40年以上前からよく知られていました。酸化チタンは白色顔料として一般的に塗料成分に採用されていますが、酸化チタンだけでなく酸化鉄、酸化銅、酸化クロム等の金属酸化物も着色顔料として採用されています。そしてこれらはすべて光触媒反応を起こして塗膜を劣化させます。つまり顔料は塗膜の最大の劣化因子と見なされてきました。そんな顔料の光触媒反応によく耐えて長期の耐候性を有する塗料として米国でフッ化ビニリデン塗料が開発されました。塗り替えが不可能な超高層ビルの外装に採用されてきてもう60年以上の実績を積んできています。我が国でも私の知る最古のフッ化ビニリデン塗料採用の建築物は大阪の御堂筋本町ビルでこれはちょうど40年経過していますがまったく劣化の兆しはありません。最大の欠点は230℃以上の高温で焼付け塗装をしなければならないことで、現場施工は不可能です。これを改良すべく、ある種の溶剤に可溶なフッ化度のさらに高いフッ素樹脂塗料を若い頃に開発しつつありました。耐候性は優に1世紀見込める自信作でしたが・・・・同じタイミングでルミフロンが画期的な塗料用フッ素樹脂として市場に登場し、上の研究は残念ながら雲散霧消してしまいました。しかし、これはフッ化度が低いので光触媒反応には十分に耐えません。人生塞翁が馬で、この経緯の経験は私に重要な知見を与えました。無機高分子だけでなく、フッ化度の高いフッ素樹脂は光触媒に1世紀耐える」ということです。これは他の光触媒関係研究者には持ち得ない知見だと思います。


2024/06/08

光触媒コーティング膜にUVカット機能を付与する

光触媒コーティング膜にUVカット機能を付与する透明の光触媒コーティング膜は1ミクロン前後のごく薄膜なので下地を保護しうるほどのUVカット機能を持たせるにはちょっと無理がありました。 この業界では有名なLambert-Beerの法則があり、UV吸収率は正確にこの法則に従います。
Log(I0/I1)=ε×c×ℓ
I0 入射光の強さ
I1 透過光の強さ
ε(UV吸収剤の吸光係数)
c(濃度)
ℓ(層の厚み)
光触媒であるかないかを問わず酸化チタンはそれ自体がUV吸収剤で日焼け止めにも採用されていますが本来は白色顔料でもありますから、あまり添加すると白濁して見映えが悪くなり、つまりcを大きくはできません。加えてℓは常識外れの薄さです。
これを解決するにはεを大きくするしかないです、まず思いつくのが有機系UV吸収剤ですね、当社も色々試してみましたが・・・・
複雑な構造の有機物ですが、光触媒の活性酸素でかんたんに変質&開裂する部分が多く、光触媒と共存させると長期の耐久性を謳える材料ではないようです。
試行錯誤の上、視点を変えて当社光触媒コーティング液をスライドガラスに塗布後、1ヶ月日光浴させてからUV吸収率の測定に供しました。他の一般的な光触媒コーティング液とことなり金属銅粉が含まれていて、それが光触媒の活性酸素で酸化されて銅イオンCu2+を発生させることが特徴になっていますが、ひょっとしてその薄くブルーに呈色する膜がUV吸収効果を持っているのではないかと考えました。もう繰り返しご紹介している反応ですね。測定中は期待と緊張でヒヤヒヤとしましたが、結果として理想的なUV吸収機能があることが判明しました。1.330nmより短波長領域で50%以上の高いカット率を示す
2.375nm付近の光触媒反応に必要なUV光をほとんど遮蔽しない
3.光触媒で分解されることはなく、逆にますますカット効果が増す
以上の特長でこのレベルの薄膜でありながらUVカット効果つまり下地保護効果が十分に高いことが判明しました。実感できるほどの下地耐候性延長効果を示す唯一の光触媒コーティング剤といえます。


全て表示
  • Facebook

PageTop